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bisher veröffentlicht.
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Abstract

In this work, we explore Large Language Model-based context retrieval strategies for
repository-level code editing task. To achieve this goal, we first implemented a novel
code editing system that incorporates AI agent features via the renowned LangChain
framework and facilitates easy experimentation due to a modular architecture and rich
configuration features. Next, we proposed numerous context retrieval strategies to in-
vestigate the impact of individual components on both context retrieval and downstream
code editing performance. Finally, we ran a series of experiments with the proposed
context retrieval strategies. Our findings suggest that agent-based methods for context
collection perform better compared to unmodified queries to BM25. In addition, agents
with additional reasoning perform more effectively than single-loop agents.
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1 Introduction

Software developers often need to modify existing codebases, either to accommodate
evolving requirements, incorporate new features, or rectify bugs. These tasks are far
from trivial and require a comprehensive understanding of the internal structure of the
project. Consequently, both researchers and practitioners have devoted considerable
efforts to exploring methods to automate code editing.

From the machine learning perspective, code editing can be formulated as automati-
cally implementing changes for the existing project based on the given natural language
instruction. Popular examples of real-world tools with such capabilities include GitHub
Copilot [1] and Amazon CodeWhisperer [2]. From the research side, the most notable
code editing approaches involve Large Language Models (LLMs), which play an essen-
tial role in the automation of many code-related tasks [5, 9, 16, 19, 26, 29, 34, 53].

Figure 1: An overview of Code Editing task. The figure is taken from Jimenez
et al. [20].

When modifying a function, developers must consider all instances of its usage in the
code, a hard task due to the code dependencies and implicit code contracts. This highly
intertwined nature of real-world projects presents difficulties for many automated sys-
tems, including LLMs, due to their context length limitation. However, in industrial soft-
ware development, engineers often work on extensive projects with thousands of code
files, each encompassing a large number of lines.

Consequently, several researchers are exploring the use of AI agents for code editing
tasks [28, 33, 41, 54]. Moreover, in concurrent research, by incorporating Retrieval-
Augmented Generation (RAG) and code search capabilities, developers equip AI agents
to progressively edit the code [4, 7, 20, 25, 38, 47, 55].

The common implementation of AI agents for code editing includes two components:

Context Retrieval collects relevant code based on the developer’s instruction. The use
of LLMs is not mandatory here.

Editing modifies the relevant code fragments as per the developer’s instruction. Given
the complexity of this task, LLMs’ coding and reasoning capabilities become essen-
tial.

Context retrieval, while it is arguably the simpler component, is still crucial for the overall
performance of the system. Intuitively, if a vital code section isn’t identified as the rele-
vant context, then it is not possible to correctly execute the code editing. Similarly, if many
sections of irrelevant code are retrieved, it increases the possibility of introducing irrele-
vant changes that might break the code. The experimental results of Jimenez et al. [20]
also confirm that context is crucial for the end performance of code editing systems, with
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oracle retrieval significantly increasing the number of correctly resolved GitHub issues for
all models compared to simpler BM25 retrieval. The results of Phan et al. [30] align with
these conclusions for a slightly different subset of coding tasks.

Therefore, it is of utmost importance to improve the quality of the context retrieval com-
ponent of code editing systems. Although the code editing task has recently gained
increased attention from the research community, the latest works focus on end-to-end
AI agent code editing solutions, without careful consideration for the specific parts of the
pipeline. Therefore, in this work, we pose the following research question with the aim of
providing a deeper insight into the use of AI agents for code editing:

RQ: Does reasoning in agentic context retrieval improve code editing per-
formance?

In this work, we study the different LLM-based agentic context retrieval options and how
they affect the overall code editing process. Specifically, despite their coding ability, LLMs
are notorious for hallucinations and inconsistencies [17]. Therefore, small changes in
prompting and tool implementation can significantly change the quality of context retrieval
and, consequently, the downstream code editing predictions. Reasoning and planning
methods are universal and can be applied both to the context retrieval component (if
implemented using agents) and to the editing component.

To answer our research question, we have formulated the following objectives for our
research.

Propose context retrieval strategies Despite using the same retrieval mechanism, the
context collection can be varied by altering the search queries and the amount of
information retrieved. Hence, we experiment with various non-agentic (baseline)
and agentic state-of-the-art approaches.

Experiment setup To facilitate our research, we needed to implement an experiment-
focused code editing system. Unlike concurrent researchers, we have utilized the
renowned LangChain [8] framework, which makes our system production-ready and
easily extensible by other researchers. We have made our code publicly available
on GitHub 1.

Define metrics and evaluate search strategies To assess the quality of agents’ pre-
dictions, we have established an evaluation methodology for analyzing the predic-
tions, as is done in other code editing systems evaluations [7, 20]. To answer our
research question, we evaluated different context retrieval setups, including LLM
and non-LLM methods, and experimented with applying reasoning and planning to
the context retrieval component.

This work is structured as follows. Section 2 introduces the concepts used throughout the
work and the subject area. Section 3 outlines our proposed approaches, our code editing
system, and the setup of the experiments. Section 4 presents the evaluation methodology
and results. Section 5 describes the conclusions of our work.

1https://github.com/JetBrains-Research/ai-agents-code-editing
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2 Statement and Motivation of Research

In this section, we introduce all the necessary concepts and explain in detail how modern
AI agents for coding tasks work.

2.1 Large Language Models

Language modeling is a crucial concept in the field of natural language processing (NLP).
In general, language models (LMs) aim to estimate the likelihood of word sequences to
predict the probabilities of future (or missing) tokens [57]. They are used in many NLP
applications. Research on language models has progressed from statistical n-gram mod-
els [52], through Recurrent Neural Networks (RNNs) [21], to Transformer-based mod-
els [42].

Large Language Models (LLMs) are language models with billions of parameters, trained
on a large amount of text data [6, 57]. Most LLMs are based on the Transformer archi-
tecture that was first introduced in the highly influential work of Vaswani et al. [42]. These
models can generate human-like texts and perform downstream tasks such as transla-
tion, question answering, and summarization, making them versatile tools in the NLP
area [22].

Furthermore, their remarkable capabilities extend beyond the text domain. By training
LLMs on code, it has been shown that they achieve commendable scores for many coding
tasks [9, 48], commonly outperforming any other non-Transformer approach.

2.2 Retrieval-Augmented Generation (RAG)

The quadratic complexity of the attention mechanism, one of the key components of the
Transformer architecture, limits the maximum context length that Transformers can pro-
cess [42]. Moreover, even models that support long input contexts show quality degrada-
tion when using information from the middle of the context [27].

Thus, Retrieval-Augmented Generation (RAG) has been developed to tackle this issue.
It incorporates task-related knowledge from external databases into the LLM context on
demand, allowing one to improve the generation quality without the need to load the entire
database into the model’s context. RAG has seen widespread adoption, becoming a key
technology to improve the suitability of LLMs for real-world applications. The basic RAG
process involves indexing, retrieval, and generation [12]:

• Indexing is performed by cleaning and converting the raw data into plain text for-
mat. To handle the language model’s context size limitations, the text is broken
down into chunks (documents) of manageable fixed length.

• Retrieval is performed by calculating similarity scores between the user query and
the indexed documents, returning the k documents with the highest similarity.

• Generation is performed by feeding the chosen documents (context) and the initial
task as input for the LLM. The model responds using its own knowledge and the
information contained in the retrieved documents.

Retrieval for code tasks has been a major research area, driven by its tangible real-world
applications [10]. The primary difficulty in efficient code retrieval is finding a seman-
tic connection between natural language descriptions and code fragments. Numerous
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approaches have been developed, including both classical ML and deep learning meth-
ods [14, 15, 18, 51].

2.3 BM25

Due to the long length of code documents, retrieval with dense methods (using latent
space representations of queries and texts to construct semantic matching functions for
relevance modeling) [24] is mostly ill-suited for repository-level tasks, given the high com-
putational costs. Thus, we adopted the BM25 algorithm for our purposes, aligned with
Jimenez et al. [20].

BM25, also known as Okapi BM25, is a ranking function based on the bag-of-words
model, used in information retrieval to assess how relevant documents are to a specified
search query [35, 40]. It ranks documents based on query terms, regardless of their
position in the document. More precisely, BM25 is a family of scoring functions with
variations in components and parameters. One of its forms found in Trotman et al. [39]
and implemented in the rank-bm25 Python package is defined in Equation 1.

rsvq =
∑
t∈q

log

(
N

dft

)
· (k1 + 1) · tftd
k1 ·

(
1− b+ b · Ld

Lavg

)
+ tftd

(1)

For a query q, the retrieval status value rsvq is calculated as the sum of scores for each
term t. Here, N represents the total number of documents, dft the documents containing
term t, and tftd the frequency of term t in document d. Ld and Lavg denote the length of
a document and the average document length, respectively.

2.4 AI Agents

Historically rooted in philosophical discussions, an agent generally refers to an entity
with the capacity to act. For a more rigorous definition, within the area of Reinforcement
Learning (RL), agents interact with an environment through observations and actions.
Each interaction involves the agent receiving an input that indicates the current state of
the environment and then choosing an action that alters the state of the environment [23].

Humanity has long pursued AI that matches or surpasses human intelligence, consider-
ing AI agents as a promising approach. The design of adaptable AI agents requires a
versatile model. LLMs, known for their advanced reasoning [56], are viewed as potential
catalysts for Artificial General Intelligence (AGI). LLMs have yielded significant results in
the development of AI agents [46].

An AI agent commonly includes three components, as shown in Figure 2.

• Tools: Humans often use tools to perform tasks that exceed our physical and men-
tal capabilities. Similarly, providing LLMs with external tools can greatly enhance the
performance of these models [37]. Specialized tools improve the expertise, adapt-
ability, and suitability of LLMs for domain-specific needs [32]. LLM-based agents
not only need tools but are also well-suited for their integration. LLMs, enriched
with pre-training and Chain-of-Thought (CoT) prompting, have shown significant
reasoning and decision-making skills in complex environments [43].
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Figure 2: Overview of a LLM-powered autonomous agent system. The figure
is taken from Weng [45].

• Memory: Agents based on LLM process past interactions in natural language, in-
corporating previous data into each input. As this data accumulates, it might exceed
the capabilities of the Transformer architecture, potentially resulting in the truncation
of content. Moreover, as agents accumulate historical observations and actions, the
increasing memory load makes it harder to link related topics, possibly leading to
misaligned responses. To address these challenges, memory stores environmental
information and uses it to guide future actions [46].

• Reasoning and Planning: Although LLMs have extraordinary abilities in NLP tasks,
they are also known for their hallucinations and inconsistencies [17, 36]. This is why
methods have been developed to improve the reliability and logical consistency of
the outputs. Reasoning refers to thinking about something systematically and log-
ically to reach a conclusion or make a decision [56]. Planning refers to preparing
a certain list of actions before actually executing them [17]. These linked concepts
aim to improve the agent’s output stability and significance, often discussed to-
gether in the context of the model’s thought structuring abilities. Here are common
reasoning and planning techniques:

– Chain-of-Thought (CoT): This approach uses a few ’chain of thought’ exam-
ples, which are intermediate reasoning steps in natural language, requested
by LLMs. In doing so, the model learns to provide a clear rationale before the
final answer, significantly improving LLM performance on various reasoning
tasks [44].

– Tree-of-Thought (ToT): a planning method that expands on CoT, using coher-
ent text units (thoughts) as intermediate problem-solving steps. It considers
various reasoning paths (chains) using the DFS or BFS algorithm, evaluates
choices, and backtracks when needed [49].

– Self-Correction: Language models can occasionally make mistakes during
the reasoning process. The tools can correct reasoning errors and improve
the accuracy of the answer [56]. The tools use evidence for self-correction of
initial outputs [13]. For instance, the LLM’s code can be additionally validated
through the execution of the program [33].
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– ReAct [50], unlike CoT, alternates between reasoning (Thought step) and
planning (Action step), demonstrating significant improvements in planning ca-
pabilities [17].

2.5 Code Editing with LLMs

Given the introduction of LLMs and the paramount practical significance of code editing,
it is only natural that this research direction is being investigated in depth.

2.5.1 Non-agentic Code Editing

Some of the recent work on code editing does not involve AI agent approaches.

• OctoPack [29], InstructCoder [34], DeepSeekCoder [16] and Coeditor [19] pro-
pose novel datasets and fine-tune LLMs for function-level and file-level code editing.
These works, although not directly applicable to repository-level code editing, are
still of significant importance, as they can be used as editing tools for more complex
agent systems.

• CodePlan [5] is an approach for repository-level code editing. The authors utilized
static analysis for the code editing LLM workflow planning.

Upon receiving an instruction (e.g., a function definition change), the method ana-
lyzes and identifies affected code chunks (e.g., external calls, inheritance). These
chunks are added to the planning graph, linked to dependent nodes, and marked
as pending.

Nodes without pending dependencies are offered to a LLM for modification. The
prompt for change includes the code chunk, spatial context (other methods in the
same class or file), temporal context (the diff from the method’s start to its current
state), and causal context (reasons for node addition and changes to dependent
nodes). The method then repeats the process for new changes.

The resulting repository is passed to a testing mechanism. The compilation / type
check is used for quality assurance. Errors in testing initiate a new iteration of the
method, restarting the process.

This method highlights the significance of static analysis and the benefits of an
iterative approach to code editing.

2.5.2 AI Agents for Code Editing

Given the advances in the research related to AI agents, there has been a recent surge
of papers that have applied them to code editing. The following represents a selection of
such papers.

• SWE-Agent [47] is a novel end-to-end agent system for doing code editing and
bug repair tailored towards GitHub issues. They use directory substring search
for context retrieval, incorporate a linter for quality assurance, and employ a sepa-
rate IDE-like editor for editing. It achieves commendable results in the evaluation
benchmarks, showing the potential of AI agents code editing.
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• AutoCodeRover [55] also proposes an agent system to solve Github issues. Like
this concurrent work, the authors focus on the context retrieval for the code editing
task to improve the downstream results. They employ a program representation
(abstract syntax tree) rather than viewing a software project as just a collection of
files.

• AutoDev from Tufano et al. [41] is an automated system for coding tasks. It provides
a proof-of-concept solution for various codebase operations, including file editing,
retrieval, build processes, execution, testing, and git operations. Its code search
functionality is limited to find, grep, ls CLI tools. This work demonstrates practical
applications of AI agents in coding.

• MAGIS, a multi-agent system, was developed as detailed in Tao et al. [38]. It is a
software evolution framework with four distinct agents: Manager, Repository Cus-
todian, Developer, and Quality Assurance Engineer. The framework focuses on
agent collaboration in planning and coding. The Repository Custodian uses BM25
for retrieval and LLM for reranking.

In addition, approaches such as Luo et al. [28], Zhang et al. [53, 54] have explored ad-
jacent tasks of repository-level documentation generation and code completion with AI
agents.

3 Description of the Investigation

3.1 Code Editing System

3.1.1 Requirements and Tasks

To perform our experiments, we have to develop a code editing system (CES) with the
following criteria:

• AI Agent support: To streamline experiments with AI agents, a CES must support
working with them. This is not an easy task, since (as described in Section 2.4) the
AI agents involve multiple complex components such as tool usage, reasoning, and
memory. Moreover, there are also practical issues like error handling and working
with different LLMs and their input formats.

• Modular design: To enable rapid experimentation, it is crucial that components like
context retrieval, underlying retrieval mechanism, LLM provider, prompts, etc. can
be swapped out interchangeably without modifying the whole system.

• High extensibility: To ensure maintainability and extensibility, we need our system
to use industry-standard frameworks and tools. This way, future researchers will be
able to build on top of our system

• Multiprocessing: Since LLM invocation is a notoriously computationally costly pro-
cess, there should be an option to parallelize computations to ensure faster code
editing. However, additional practical complications arise when running too many
agents at once, most notably provider-specific issues like OpenAI’s rate limit and
GPU memory.

Unfortunately, modular design and high extensibility are not present in concurrent re-
search into code editing [47, 55]. This drives us to develop our own CES that has these
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qualities.

3.1.2 Implementation

In this section, we describe the code editing system (CES) that we have developed to
perform our experiments.

We implemented the system in Python, a popular programming language for ML-related
tasks because of its vast package ecosystem.

For code editing, we use LLMs from OpenAI and HuggingFace. These two companies
are the leading LLM providers for proprietary and open-source models, respectively. To
interact with these models, we use the corresponding Python packages: openai and
transformers.

To work with AI Agents, we selected the LangChain framework, a leading toolkit for agent-
related tasks. It simplifies working with LLMs by providing easy primitives for chaining
models, creating state graphs, parsing the outputs, and more. This framework allows our
code system to be more robust and simpler to maintain and extend.

To make our system easily configurable and facilitate reproducibility, we use the Hydra 2

package for configuration management. Due to a modular software design, we can con-
trol and swap out different components of the system using a single yaml file. This en-
ables rapid experimentation with CES.

These choices make our system adherent to the criteria outlined previously. We have
published the code on GitHub3, making it accessible to researchers to use and extend.

3.1.3 Structure of the code editing system

The common algorithm for running inference via our proposed CES is the following:

1. Dataset Loading: A dataset containing the NL instruction and the codebases rep-
resented by git repositories are parsed. The codebase state is represented by a
git commit. More details on the structure of the dataset are discussed in Section 4.

2. Experiment Initialization: During the CES inference loop, when the worker in the
pool picks up a datapoint, the git repository is cloned and checked out at the cor-
responding commit in a temporary directory. Following this, the retrieval component
indexes the code files in the repository and builds an index to perform code search
queries.

3. Code Editor Invocation: The code editor is then called. The implemented variants
of code editors are described in Section 3.1.4. A code editor accepts the instruction
and the testbed and has to modify it according to the instruction. When the code
editor has finished the execution, the predicted diff is calculated by the git diff

command.

4. Output to a prediction file: At the end of inference the predictions are saved in
a .jsonl file. It contains the predicted diff patch to be applied to the repository,
the lines used for code editing (to evaluate context retrieval), and the data from the

2https://hydra.cc
3https://github.com/JetBrains-Research/ai-agents-code-editing
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dataset (including the ground truth diff). The prediction files are then given to the
evaluation subsystem to perform a quantitative analysis of the editing.

3.1.4 Implemented Code Editors

Code editors are the core abstraction for inference in our CES. We have developed mul-
tiple code editors to evaluate the code editing approaches as a whole.

1. LLM: The simplest code editor does not involve AI agents. It does not utilize code
search and instead uses oracle localization as defined in Jimenez et al. [20]. Or-
acle localization refers to the perfect context retrieval when the editing component
receives precisely the code sections referenced in the ground truth diff.

This code editor, despite its simplicity, has multiple uses for our study. First, it
serves as a reference point for context retrieval evaluations. Second, it allows us
to evaluate the capabilities of different large language models in a reproducible and
equal setting, rendering another use of our CES.

2. End-to-End Agent: This code editor is implemented by a single invocation of an
agent with tools to view and edit the code. It mirrors the approaches used in
the most prominent literature [3, 4, 25, 47]. Current tools include code-search,
view-file, and edit-file (refer to Section 3.2.2).

This method, while seemingly intuitive, complicates the evaluation and tuning of
individual components. The intertwined usage of tools further hinders finding the
agent’s optimal configuration.

Nevertheless, this code editor is useful for comparisons with ongoing research.

3. Retrieve & Edit: In this code editor, as discussed in the Introduction, context re-
trieval and editing are separated into two consecutive stages. This allows us to
make an easier and more interpretable evaluation and experimentation with the
context retrieval part.

This setup currently achieves state-of-the-art results [55] on the renowned code
editing benchmark SWE-Bench [20], prompting significant scientific interest in this
approach.

The result of the context retrieval is a set of code sections that the editing compo-
nent should process.

3.2 Context Retrieval Variations

As discussed in the previous sections, the quality of the context retrieval stage is paramount
for the downstream quality of code editing predictions.

To collect the context of relevant code we utilize retrieval mechanisms discussed in Sec-
tion 2.2. To produce documents required for indexing, we split every code file into chunks
of equal length with a small overlap.

Despite the same retrieval mechanism (BM25, in our case) used under the hood, there
are numerous ways to implement the context collection, since one can change the queries
used for the search and the number of documents retrieved per search. This is the focus
of our investigation.
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3.2.1 Unmodified BM25

The simplest baseline context retrieval method that does not involve any use of LLM. It
assembles the context by running a single request to the underlying retrieval mechanism
for the top documents using the natural language code editing instruction as the query.

Due to the TF-IDF-like mechanism of BM25, as discussed in Section 2.3, the retrieval
mechanism is able to find the most relevant documents using rare meaningful tokens.

To make a valid comparison with the other context retrieval variations, we collect the
context from the retrieved documents until the total context length has reached k tokens,
where k is a hyperparameter.

3.2.2 Agent

Figure 3: Agent Context Retrieval

Following the setups in the literature, we present
the Agent context collection. The underlying agent
has access to two tools:

• code search tool searches for documents us-
ing the underlying retrieval mechanism using
the given query. In addition, it accepts limit

and offset integer parameters for additional
flexibility for the agent. Returns the docu-
ments as code snippets with file path and line
numbers added for subsequent use.

• add to context tool adds a given code snip-
pet to the context. It accepts a file name,
start, and end line numbers that the agent has
learned from invocations of code search. If
some line is added twice, the second addition
is ignored. In this setup, once added, a line
cannot be removed from the context.

When invoked, we prompt the agent to collect con-
text for the code editing task using the tools pro-
vided. We employ a simple CoT technique to en-
courage the agent to break down his planned ac-
tions before performing them. Our prompt is easily configurable and is available in Lang-
Smith 4. An illustrative example of a typical agent workflow is presented in Figure 3 as a
LangSmith log.

Once the agent decides to finish the context collection, we take the collected context lines
from the add to context tool and pass them to the editing component.

3.2.3 Agent with Fixed Context Size

In our experiments, we have noted that the simple agent strategy usually collects not
enough context in length. This is part of the importance of planning discussed in Sec-

4https://smith.langchain.com/hub/jbr-code-editing
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tion 2.4. Hence, we propose an Agent with Fixed Context Size strategy, where the agent
is forced to collect at least k tokens in the context.

Figure 4: Agent with Review

To enable this strategy, a review step is added after the agent completes, checking if
the context meets the required token count. If met, it proceeds to the editing subtask;
otherwise, the agent is re-invoked until the condition is satisfied. Additionally, the agent
prompt explicitly mentions how much context it is required to collect and how much it
has collected so far. Obviously, agent memory should make it possible to remember
previously seen documents. This setup is depicted in Figure 4.

3.2.4 Agent with Self-Correction

Self-Correction, as described in Section 2.4, is a universal reasoning method that can be
applied to numerous areas. We use self-correction in our agent context collector to better
reason the context length.

We replace the context length sufficiency check by having the same agent evaluate the
collected lines to determine if the context is sufficient or if further collection is needed.
The decision is made solely by the agent and is based only on its own understanding of
the codebase.

3.3 Editing Component

Lastly, we describe the implementation of the editing component of our code editing sys-
tem. Although it is not the target of our investigation, it is still the essential component
to perform inference and evaluate the impact of context retrieval on code editing perfor-
mance.

The editing component receives a list of lines grouped by files and outputs a diff patch
file. The simplest way to generate predictions through LLMs would be to generate the
entire file, but this would not fit the model context and could lead to hallucinations [17].
We could generate the diffs themselves; however, due to the complexities of the git diff
format, the model could easily make a mistake, making it necessary to rerun the whole
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generation. To combat this issue, we group the lines into consecutive code sections,
process the code in these groups, and generate a new version for each of them.

Figure 5: Editing Component
Example

In order to make the changes of different code sections
coherent with one another (imagine two API calls to
the same method being edited differently), we employ
AI Agents once again. Their memory and reasoning
components allow us to make better code edits.

The resulting algorithm is the following:

1. Given relevant lines of code in different files, split
them into consecutive sections for each file.

2. For every section in every file invoke the AI Agent
with the code section and the instructions in the
input prompt.

3. After completion of the edit, replace the corre-
sponding section in the original file.

4. When all sections have been processed, run git

diff at the root of the testbed to generate a
patch.

4 Evaluation of the Investigation

In this section, we describe the ways in which we eval-
uated our code editing systems and the data we used
to perform these evaluations.

4.1 Datasets

Code editing requires the state of the repository prior
to modification and the corresponding instruction. This is typically done by searching
GitHub and similar services for meaningful commits in large projects. Each data point
should include the following keys:

• instruction: Natural language description of the developer’s intentions. Typically
a Git commit message or GitHub issue body.

• repo: Git repository of the commit.

• hash: Git commit SHA where the code has been edited. Changes in code from the
commit are regarded as the ground truth.

• tests (optional): A set of checks that verify the correctness of code edits or issue
resolution.

From this data and the git tool, we can collect other necessary information for inference,
such as true git diff, files at the base commit (before the change), and others.

For an accurate evaluation of the code editing system, it is important to choose data that
represents real-world code well. With this in mind, we have used three high-quality code
editing datasets in our evaluation.
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LCA-CI-Fixing5 is a dataset for the code repair task collected by JetBrains Research.
To construct the instruction, we find the first mention of the "error" substring in the
logs and give the model 10 lines around that mention with a prompt to fix this error.

LCA-Code-Editing6 is a dataset for the code editing task with the focus on longer code
edits, also collected by JetBrains Research. Figure 6 shows the distribution of the
instruction types in the dataset.

SWE-Bench Lite7 is one of the most frequently reported datasets in the literature. It
consists of real-world GitHub issues in Python projects. The Lite version of the
SWE-Bench [20] consists of 300 rows, as opposed to 2.3k in the original version.

The detailed breakdown of the datasets used in the investigation is presented in Table 1.

Dataset Data Points
Context Length

(tokens) Has Tests

lca-ci-fixing 144 512 ✓

lca-code-editing 119 1200 ✗

SWE-Bench Lite 300 120 ✓

Table 1: The information about the considered datasets.

Refactoring &
 Cleanup (31.09%)

New Features (26.05%)

Bug Fixes (25.21%)

Documentation (10.08%)

Configuration (7.56%)

Instruction Types in lca-code-editing

Figure 6: The distribution of instruction types in the lca-code-editing

dataset.

4.2 Metrics

4.2.1 Context Retrieval Metrics

To evaluate the different context retrieval mechanisms, we can calculate Recall, Precision,
and F1 of the collected context, comparing it with the ground truth diff, treating it as
a binary classification problem. The objects of this classification can be files, Python

5https://hf.co/datasets/JetBrains-Research/lca-ci-fixing
6https://hf.co/datasets/JetBrains-Research/lca-code-editing
7https://swebench.com
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scopes (classes, functions), or lines. The formulas for the Python scope level are shown
in Equations 2, 3, and 4.

precision =
|{relevant scopes} ∩ {retrieved scopes}|

|{retrieved scopes}|
(2)

recall =
|{relevant scopes} ∩ {retrieved scopes}|

|{relevant scopes}|
(3)

F1 =
2 · precision · recall
precision + recall

(4)

4.2.2 Code Editing Metrics

In addition, to evaluating context retrieval, we are also interested in the performance of
the downstream code editing task. Hence, to perform a quantitative analysis of our code
edits, we employ two groups of metrics: execution-based metrics and text-based metrics.

Execution-based metrics. If the dataset contains tests for each datapoint to verify
that the instruction has been followed correctly, then a meaningful metric to calculate
is pass@k. It represents the percentage of data points where tests pass at least once dur-
ing k tries. Out of the datasets we considered, covered in Section 4.1, execution metrics
are applicable to SWE-bench Lite and LCA-CI-Fixing.

In the literature related to code editing, only pass@1 or pass rate is commonly reported [47,
55]. In addition, it is significantly cheaper in terms of computational resource. This is why
we have decided to only calculate the pass@1 metric.

Text-based metrics. Text-based metrics are calculated by analyzing the similarity of
ground truth and predicted changes between diffs or between the resulting code.

We have selected the following metrics:

• CodeBertScore from Zhou et al. [59] represents the cosine similarity between pre-
dicted and ground truth code in the embedding space. It uses an encoder-only
Transformer CodeBERT [11] to produce the embeddings, hence the name.

• Character n-gram F-score (chrF) evaluates machine translation by comparing
character n-grams between the output and a reference [31].

• LLM-based Evaluation can be used to judge the quality of the predictions. The
larger the model and the higher its reasoning abilities, the better. [58]. LLM can be
used to predict a score for each prediction individually, but comparing predictions in
a pairwise fashion is usually more robust. In the latter case, the performance can
then be numerically quantifiable by the win rate.

Localization metrics. Since we have a ground truth diff, we are interested in under-
standing whether the predicted diff references the same files, lines, or Python scopes. To
achieve this, we treat the code editing as a binary classification task, where the task is
for the git diff to reference the same set of files/lines/scopes. Therefore, we are able to
calculate the recall, precision and F1 of this classifier.
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4.3 Hyperparameters

For our experiments, we used the BM25 retrieval mechanism. We are using OpenAI
GPT-3.5 Turbo as LLM for the AI agent. We have split the code into chunks of 512 tokens
with overlap of 128 tokens (as obtained from the GPT-3.5 Turbo tokenizer). This roughly
corresponds to 10 lines of code.

We have evaluated the following variations of strategies introduced in Section 3.2: Un-
modified with 200, 500 total tokens, Agent, Agent Fixed with 500, and Agent Self-Correction
for SWE-Bench experiments. For LCA datasets, we have also included 2000 tokens vari-
ations.

4.4 Results

4.4.1 Context Retrieval

Strategy Recall Precision F1

Context Length
(tokens)

Baseline

Unmodified 200 0.14 0.08 0.09 218
Unmodified 500 0.17 0.05 0.07 487

Agentic Retrieval

Agent 0.15 0.11 0.11 247
Agent Fixed 500 0.25 0.05 0.08 894
Agent Self-Correction 0.18 0.12 0.13 253

Table 2: Context Retrieval Metrics

We present the most notable results in Table 2 — it includes metrics calculated for the
SWE-Bench Lite dataset on the Python Scope level. Full results are provided in the Ap-
pendix A.

Furthermore, we can examine the distribution of the context lengths collected for the
SWE-Bench dataset. Agent Fixed 500 exhibits a higher context length than anticipated
due to the sufficiency condition being greater than or equal, with no restrictions on large
additions by the model.

We observe that Agent and Agent Self-Correction collect around 220 tokens on average
since they have free choice. It is a relatively small amount of information, and yet quite
close to the true average context size of 120 for this dataset, as detailed in Table 1.

Moreover, we note that agentic methods are comparable to non-agentic methods with
similar context length. Moreover, Unmodified with 500 tokens is comparable to Agent
Self-Correction with a much lower context length of about 200 tokens. Moreover, Agent
Fixed 500 shows a markedly higher recall than the Unmodified alternative, underscoring
effective agent-formed queries.

Furthermore, the precision of context retrieval is significantly higher for agentic approaches
(Agent and Agent Self-Correction) with a ”free choice” of context length compared to
other methods. This indicates that the agent ceases to retrieve when the context be-
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comes filled with irrelevant tokens, aligning with the recall-precision trade-off. This trade-
off is highlighted in the F1 column.

These results suggest the following conclusions, supported by statistical tests:

1. Unmodified BM25 is inferior to agent-based methods for context retrieval in terms
of localization metrics.

2. The Agentic retrieval with free context length choice collects a context of appropriate
length.

3. The Agentic retrieval with an additional sufficiency condition marginally surpasses
the single-loop agentic retrieval.

It should be noted that the context lengths for Agent and Agent Self-Correction have min-
imal differences. Our investigation shows that, on average, the standard Agent conducts
1.6 searches, while the Agent Self-Correction performs 2.6 searches and 1.5 invocations.
The sufficiency criterion may need future modifications to improve context collection.

4.4.2 Code Editing

Strategy Recall Precision F1 chrF

Baseline

Unmodified 200 0.14 0.08 0.09 0.064
Unmodified 500 0.17 0.05 0.07 0.061

Agentic Retrieval

Agent 0.17 0.11 0.12 0.065
Agent Fixed 500 0.22 0.04 0.07 0.056
Agent Self-Correction 0.19 0.13 0.14 0.074

Table 3: Code Editing Metrics

To check the downstream code editing performance, we have conducted an evaluation
using the code editing metrics introduced in Section 4.2.2.

We present the localization metrics for the performed edits and chrF scores calculated
for SWE-Bench Lite in Table 3 (full results in Appendix A). We can observe that they,
to a great extent, follow the findings based on the context retrieval results described
in Section 4.4.1. This may be due to the code editor tending to edit regardless of the
relevance of the code. Introducing a reasoning step before editing might mitigate this
issue, although it is outside the scope of this study.

Moreover, the results show that the Agent Self-Correction marginally outperforms the
other strategies in terms of the chrF score between edited code sections in the predicted
diff versus the ground truth diff. This underscores the importance of precision and the
advantages of an agentic approach.

16



5 Conclusion

In this work, we present our investigation of the LLM-based context retrieval agents for
code editing. We evaluated several context retrieval strategies similar to those found in
the literature, focusing on their performance both in standalone context retrieval and in
code editing.

To facilitate our experiments, we implemented a novel code editing system optimized for
rapid experimentation and published it on GitHub8.

We have developed a methodology for evaluation by collecting relevant data and estab-
lishing meaningful metrics.

Our evaluation leads to the following conclusions regarding our research question:

1. Agent-based methods for context collection significantly outperform unmodified BM25
in both context retrieval and code editing metrics;

2. Agents that assess the sufficiency of the context collection perform better than those
that do not — the reason for this is that an excessive amount of context could
otherwise accumulate;

3. Agents that perform several iterations of context collection and employ reasoning
techniques (such as Self-Correction) show marginally better results than those with
a single iteration.

Further Work

The area of AI agents for code editing is both practically important and inherently chal-
lenging, necessitating further work. In the following, we outline several potential directions
for future work.

Firstly, code editing with our context retrieval approaches has shown low pass rates in
code editing tasks, highlighting the critical need to improve its performance.

Secondly, many advanced context retrieval methods without the use of AI agents have
been developed recently. In particular, the use of static analysis tools seems to be a
promising research direction [5, 30, 55]. Investigating optimal integration of such methods
into the AI Agent workflow is crucial.

Finally, it is crucial to enhance the agent’s understanding of context sufficiency. Our ex-
periments using lca-code-editing dataset revealed a significant lack of retrieved con-
text, indicating a poor grasp of the related code.

8https://github.com/JetBrains-Research/ai-agents-code-editing
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A Full Evaluation Results

In this section we present the full experiment results. In Tables 4, 5, and 6, the plus-minus
term denotes the 95% confidence interval of the mean estimator.

Among the code editing metrics not included in Table 3, CodeBertScore and LLM evalu-
ation proved to be ineffective in our experiments. The pass rates for all approaches using
SWE-Bench Lite datasets were low, indicating the need to improve our context retrieval
and editing components. For the lca-ci-fixing, we observe very low successful test
passes, so there is not enough data to draw conclusions.

As for the other datasets, we note that the results for the lca-ci-fixing are quite similar
to those for the SWE-Bench Lite. For the lca-code-editing, the agentic methods with
variable context length show significantly reduced performance. This may be due to
the longer ground truth context in this dataset compared to others (see Table 1). Thus,
this highlights a valuable research direction: optimizing the agent’s understanding of the
necessary context.

name Agent Agent Fixed 500 Agent SC BM25 200 BM25 500

Line CR Recall 0.046 ± 0.013 0.100 ± 0.02 0.054 ± 0.014 0.065 ± 0.018 0.081 ± 0.019
Line CR Prec 0.040 ± 0.012 0.0137 ± 0.003 0.048 ± 0.014 0.030 ± 0.009 0.0148 ± 0.004
Line CR F1 0.034 ± 0.010 0.023 ± 0.005 0.039 ± 0.010 0.037 ± 0.010 0.024 ± 0.006
Line AE Recall 0.049 ± 0.015 0.078 ± 0.019 0.072 ± 0.018 0.071 ± 0.019 0.076 ± 0.019
Line AE Prec 0.033 ± 0.011 0.0107 ± 0.003 0.044 ± 0.012 0.031 ± 0.009 0.0186 ± 0.006
Line AE F1 0.034 ± 0.011 0.0178 ± 0.005 0.046 ± 0.012 0.038 ± 0.011 0.026 ± 0.007
PyScope CR Recall 0.149 ± 0.02 0.25 ± 0.03 0.176 ± 0.03 0.136 ± 0.02 0.175 ± 0.03
PyScope CR Prec 0.106 ± 0.019 0.048 ± 0.007 0.124 ± 0.02 0.081 ± 0.016 0.048 ± 0.008
PyScope CR F1 0.113 ± 0.019 0.075 ± 0.010 0.131 ± 0.020 0.094 ± 0.017 0.071 ± 0.011
PyScope AE Recall 0.174 ± 0.03 0.22 ± 0.03 0.193 ± 0.03 0.144 ± 0.03 0.173 ± 0.03
PyScope AE Prec 0.112 ± 0.019 0.048 ± 0.009 0.126 ± 0.02 0.078 ± 0.015 0.051 ± 0.009
PyScope AE F1 0.124 ± 0.019 0.071 ± 0.011 0.138 ± 0.02 0.093 ± 0.017 0.072 ± 0.012
File CR Recall 0.36 ± 0.04 0.53 ± 0.04 0.38 ± 0.04 0.23 ± 0.03 0.29 ± 0.04
File CR Prec 0.23 ± 0.03 0.111 ± 0.013 0.24 ± 0.03 0.141 ± 0.02 0.091 ± 0.013
File CR F1 0.27 ± 0.03 0.173 ± 0.016 0.28 ± 0.03 0.169 ± 0.03 0.133 ± 0.018
File AE Recall 0.34 ± 0.04 0.40 ± 0.04 0.34 ± 0.04 0.23 ± 0.03 0.27 ± 0.04
File AE Prec 0.24 ± 0.03 0.112 ± 0.015 0.24 ± 0.03 0.147 ± 0.02 0.098 ± 0.016
File AE F1 0.27 ± 0.03 0.163 ± 0.019 0.27 ± 0.03 0.172 ± 0.03 0.137 ± 0.020
chrF 0.065 ± nan 0.056 ± 0 0.074 ± nan 0.064 ± nan 0.061 ± 0
Context 247 ± 41 894 ± 87 253 ± 35 218 ± 4 487 ± 6

Table 4: Full SWE-Bench Lite Results
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name Agent Agent Fixed 2000 Agent Fixed 500 Agent SC BM25 2000 BM25 500

Line CR Recall 0.064 ± 0.03 0.183 ± 0.05 0.117 ± 0.05 0.074 ± 0.03 0.159 ± 0.06 0.109 ± 0.05
Line CR Prec 0.122 ± 0.05 0.0190 ± 0.008 0.022 ± 0.008 0.117 ± 0.05 0.0102 ± 0.004 0.023 ± 0.010
Line CR F1 0.063 ± 0.03 0.025 ± 0.008 0.028 ± 0.010 0.066 ± 0.03 0.0163 ± 0.006 0.030 ± 0.013
Line AE Recall 0.104 ± 0.04 0.173 ± 0.06 0.137 ± 0.05 0.109 ± 0.04 0.116 ± 0.05 0.106 ± 0.05
Line AE Prec 0.109 ± 0.04 0.0190 ± 0.009 0.024 ± 0.010 0.107 ± 0.04 0.0159 ± 0.009 0.032 ± 0.017
Line AE F1 0.087 ± 0.03 0.025 ± 0.009 0.032 ± 0.011 0.089 ± 0.04 0.023 ± 0.013 0.038 ± 0.020
PyScope CR Recall 0.140 ± 0.05 0.32 ± 0.07 0.22 ± 0.06 0.190 ± 0.06 0.24 ± 0.07 0.176 ± 0.06
PyScope CR Prec 0.175 ± 0.06 0.041 ± 0.011 0.046 ± 0.013 0.177 ± 0.05 0.023 ± 0.006 0.052 ± 0.018
PyScope CR F1 0.134 ± 0.05 0.058 ± 0.012 0.063 ± 0.017 0.153 ± 0.05 0.036 ± 0.010 0.066 ± 0.02
PyScope AE Recall 0.187 ± 0.06 0.28 ± 0.07 0.24 ± 0.06 0.20 ± 0.06 0.21 ± 0.06 0.155 ± 0.06
PyScope AE Prec 0.171 ± 0.06 0.040 ± 0.012 0.045 ± 0.013 0.168 ± 0.05 0.026 ± 0.010 0.052 ± 0.02
PyScope AE F1 0.152 ± 0.05 0.054 ± 0.012 0.063 ± 0.017 0.159 ± 0.05 0.040 ± 0.015 0.062 ± 0.02
File CR Recall 0.25 ± 0.07 0.43 ± 0.07 0.34 ± 0.07 0.28 ± 0.07 0.32 ± 0.07 0.23 ± 0.07
File CR Prec 0.21 ± 0.06 0.080 ± 0.017 0.102 ± 0.03 0.22 ± 0.06 0.042 ± 0.010 0.085 ± 0.03
File CR F1 0.21 ± 0.06 0.119 ± 0.02 0.133 ± 0.03 0.23 ± 0.06 0.070 ± 0.016 0.112 ± 0.03
File AE Recall 0.24 ± 0.07 0.36 ± 0.07 0.30 ± 0.07 0.27 ± 0.07 0.28 ± 0.07 0.194 ± 0.06
File AE Prec 0.22 ± 0.06 0.081 ± 0.019 0.104 ± 0.03 0.23 ± 0.06 0.054 ± 0.016 0.096 ± 0.04
File AE F1 0.21 ± 0.06 0.116 ± 0.02 0.130 ± 0.03 0.23 ± 0.06 0.083 ± 0.02 0.112 ± 0.04
Pass Rate 0.0069 ± 0 0.0139 ± 0 0.0069 ± 0 0.021 ± nan 0.021 ± nan 0.0069 ± 0
chrF 0.040 ± nan 0.054 ± nan 0.048 ± 0 0.041 ± nan 0.035 ± nan 0.033 ± nan
CodeBertScore 0.552 ± nan 0.556 ± nan 0.554 ± nan 0.553 ± nan 0.552 ± nan 0.552 ± nan
Context 171 ± 35 2058 ± 205 805 ± 81 194 ± 48 1800 ± 54 488 ± 11

Table 5: Full lca-ci-fixing Results

name Agent Agent Fixed 2000 Agent Fixed 500 Agent SC BM25 200 BM25 2000 BM25 500

Line CR Recall 0.0179 ± 0.010 0.098 ± 0.03 0.055 ± 0.020 0.022 ± 0.011 0.0153 ± 0.008 0.060 ± 0.02 0.034 ± 0.014
Line CR Prec 0.117 ± 0.05 0.055 ± 0.02 0.072 ± 0.03 0.117 ± 0.05 0.075 ± 0.04 0.034 ± 0.014 0.062 ± 0.03
Line CR F1 0.028 ± 0.014 0.058 ± 0.020 0.055 ± 0.019 0.033 ± 0.016 0.024 ± 0.012 0.040 ± 0.015 0.041 ± 0.016
Line AE Recall 0.042 ± 0.03 0.098 ± 0.04 0.063 ± 0.03 0.042 ± 0.02 0.023 ± 0.02 0.067 ± 0.03 0.042 ± 0.03
Line AE Prec 0.118 ± 0.05 0.050 ± 0.019 0.068 ± 0.03 0.118 ± 0.05 0.091 ± 0.04 0.036 ± 0.016 0.069 ± 0.03
Line AE F1 0.046 ± 0.02 0.054 ± 0.019 0.052 ± 0.02 0.046 ± 0.02 0.028 ± 0.016 0.040 ± 0.017 0.038 ± 0.017
PyScope CR Recall 0.070 ± 0.03 0.185 ± 0.04 0.124 ± 0.03 0.078 ± 0.03 0.050 ± 0.02 0.158 ± 0.04 0.096 ± 0.03
PyScope CR Prec 0.21 ± 0.06 0.113 ± 0.03 0.144 ± 0.03 0.21 ± 0.06 0.156 ± 0.05 0.075 ± 0.016 0.127 ± 0.03
PyScope CR F1 0.089 ± 0.03 0.117 ± 0.03 0.114 ± 0.03 0.094 ± 0.03 0.065 ± 0.02 0.089 ± 0.018 0.094 ± 0.03
PyScope AE Recall 0.092 ± 0.04 0.188 ± 0.05 0.141 ± 0.04 0.098 ± 0.04 0.057 ± 0.03 0.158 ± 0.05 0.101 ± 0.04
PyScope AE Prec 0.21 ± 0.06 0.111 ± 0.03 0.145 ± 0.04 0.21 ± 0.06 0.157 ± 0.05 0.073 ± 0.019 0.124 ± 0.04
PyScope AE F1 0.095 ± 0.03 0.110 ± 0.03 0.114 ± 0.03 0.103 ± 0.04 0.068 ± 0.03 0.084 ± 0.02 0.087 ± 0.03
File CR Recall 0.22 ± 0.06 0.42 ± 0.07 0.36 ± 0.07 0.21 ± 0.06 0.175 ± 0.05 0.42 ± 0.07 0.25 ± 0.06
File CR Prec 0.30 ± 0.07 0.188 ± 0.04 0.23 ± 0.04 0.30 ± 0.07 0.23 ± 0.06 0.120 ± 0.02 0.188 ± 0.04
File CR F1 0.22 ± 0.06 0.22 ± 0.04 0.24 ± 0.04 0.22 ± 0.05 0.170 ± 0.05 0.167 ± 0.03 0.189 ± 0.04
File AE Recall 0.22 ± 0.06 0.37 ± 0.07 0.33 ± 0.07 0.192 ± 0.06 0.143 ± 0.05 0.33 ± 0.07 0.21 ± 0.06
File AE Prec 0.31 ± 0.07 0.196 ± 0.04 0.24 ± 0.05 0.31 ± 0.07 0.22 ± 0.06 0.133 ± 0.03 0.188 ± 0.05
File AE F1 0.22 ± 0.06 0.22 ± 0.04 0.23 ± 0.05 0.20 ± 0.05 0.150 ± 0.05 0.160 ± 0.03 0.165 ± 0.04
chrF 0.040 ± 0 0.059 ± nan 0.042 ± nan 0.034 ± nan 0.032 ± nan 0.071 ± 0 0.052 ± 0
CodeBertScore 0.554 ± nan 0.568 ± nan 0.561 ± nan 0.552 ± nan 0.548 ± nan 0.560 ± nan 0.556 ± nan
Context 196 ± 22 2589 ± 490 846 ± 112 198 ± 26 212 ± 6 1837 ± 38 487 ± 10

Table 6: Full lca-code-editing Results
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